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Deformed (cold-worked) samples of molybdenum ditel luride (MoTe~) - a six-layered h cp 
structure - have been found to exhibit symmetrical broadening in their X-ray diffraction 
profiles corresponding to H - K = 3N +_ 1 reflections. Integral breadth measurements 
have been used to analyse the line profiles in a manner as it is applicable to a simple 
two layered hcp structure. The reason for such a mode of approach has been 
discussed. 

On the presumption that the growth faults in this material are negligibly small, the 
deformation stacking faults probabil i ty due to the glide on Te/Te slip planes only is found 
to be _ 0.144 _+ 0.010, and the dislocation density in the bulk material is estimated to be 
--_ (2.66 + 0.36) x 10" cm cm -3. 

I .  Introduct ion 
Molybdenum ditelluride has been classified, 
according to the crystallographic information 
[1 ], as a hexagonal structure belonging to space 
group P6~/mmc (D46h). It contains two molecu- 
lar units in the unit cell. The configuration of six 
tellurium atoms about each molybdenum atom 
in this crystal is not octahedral, but is that of a 
trigonal prism: the molybdenum atom is 
located at the centre of a trigonal prism where 
the corners are occupied by tellurium atoms. 
This arrangement places molybedenum atoms on 
two vertical axes and the pairs of tellurium atoms 
are also on the same vertical axes with one 
tellurium atom above and one below each 
molybdenum atom. Therefore, a molybdenum 
layer is sandwiched between two layers of 
tellurium atoms, thus forming three layered 
blocks. These blocks are so situated on one 
another that every third one repeats the first, 
every fourth the second, etc. 

The compound is isomorphic with molyb- 
denite, hence the hcp stacking of two kinds of 
atoms may be described following Pauling's [2] 
notations by a sequence given below. 

Te(a) Mo(fl) Te(a) Te(b) Mo(~) 
Te(b) Te(a) Mo(/3) Te(a) Te(b) . . . .  

where a and b refer to tellurium positions and 
and fl refer to molybdenum positions. 
Since tellurium shows a largely non-metallic 

chemistry, its compounds are similar in nature to 
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those of selenium and sulphur. The covalent 
bonds between molybdenum and tellurium 
atoms in MoTe2 are much stronger than the 
Van der Waal's forces between the two 
adjoining tellurium layers. Therefore, one 
expects the glide on Te/Te slip planes to take 
place much easier than the glide on Mo/Te slip 
planes. 

Glide operation on Te/Te slip planes intro- 
duces "deformation or transformation" stacking 
faults which not only changes the arrangement 
(hexagonal or cubic) of the layer in which it 
occurs but also those of the subsequent layers. 
Symbolically, we have: 

A--+ B; B--~ C; C--+A 
A--~ C; B - + A ;  C---~ B . 

The letters A, B and C represent three different 
positions of a close-packed structure. This type 
of fault can be produced either during plastic 
deformation or during certain phase trans- 
formation or even spontaneously at an appro- 
priate temperature. 

Cold-work changes the diffraction pattern of 
metals, alloys and many other polycrystalline 
materials by varying the position of and 
broadening the X-ray powder pattern peaks. 
Plastic deformation of polycrystalline materials 
also produces structural changes that influence 
the physical properties of the material, e.g. the 
deformation forces introduce lattice stress and 
generate dislocations and stacking faults and 
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these parameters bear a close relationship with 
the changes observed in X-ray powder diffraction 
peaks. 

The changes in the position of powder pattern 
peaks may be attributed to residual stresses in 
bulk specimen [3, 4], to faulting and to lattice 
parameter changes due to dislocations and 
segregation of solute atoms [3, 5, 6]. The peak- 
shift produced by faulting and residual stresses 
vary with crystallographic directions. The 
broadening of peak profiles [5, 7] is assumed to 
be produced by a reduction of size of the 
coherently diffracting domains (crystallite size), 
by faulting on certain (HKL) planes and by 
distortion within the crystallites (lattice strain). 
The broadening produced by small crystallite 
size and by stacking faults is independent of the 
order of reflections but a noticeable difference 
betweer~ them is that the crystallite size affects 
all reflection points whereas the stacking faults 
influence only certain reflections. 

Stacking disorders have also been found in 
layer structures like mica [8] and graphite [9]. 
Various solid rare gases and their solid solutions 
with fcc and hcp structures and Van der 
Waal's binding [10, 11] also show the existence 
of stacking faults. They may occur in crystals as 
grown but are far more common after deforma- 
tion or after a phase transformation of marten- 
sitic type. 

In hcp materials, both growth and deforma- 
tion faults are possible on (0002) planes. There 
is, however, no peak shift and/or no peak 
asymmetry except for a symmetrical peak 
broadening as a result of either of these faults. 
The symmetrically broadened peaks correspond 
to the reflections H - K = 3N • 1, where H, K 
and L are Miller indices of the diffracting planes 
and N is zero or an integer. The magnitude of 
broadening is different for the lines that are 
"even" or "odd" with respect to the index L 
of the diffracting plane. 

2. Experimental procedure 
The material, molybdenum ditelluride, was 
obtained from M/s Research Organic/Inorganic 
Chemical Corp., California, USA. It was 
deformed at room temperature (___ 26~ by 
powdering it in an agate-mortar. The powder 
was then screened through 300 mesh classifiers 
and compacted to the desired shape for the 
sample holder of an X-ray diffractometer. A 
diffractometer was used to record X-ray 
diffraction profiles with Ni filtered CuK~ 
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1 o radiations and a scanning speed of g per 
minute. The aberration due to instrumental 
broadening inherent in the recorded profiles 
of the deformed samples was eliminated by using 
the integral breadths of the X-ray diffraction 
profiles of a vacuum-annealed powder of 
zirconium. The integral breadth due to stacking 
faults was computed after removing the effects 
of domain size and strain broadening using the 
H - K = 3ir reflection as a standard. 

3. Integral breadth measurements 
The integral breadth of K~I profile of each 
reflection was calculated. Rachinger's method 
[12] was used to separate the K~I component 
from the composite doublet K~1~2. Instrumental 
broadening effect from all such Kel profiles was 
removed by using the following relation [13]. 

b 2 

where B is the integral breadth of Kel part of a 
recorded profile, b is the instrumental broadening 
and/3 is the integral breadth of K ~  profile free 
from instrumental broadening. 

From chart-recorded diffraction profiles 
(10i3), (0006) and (10i5) as shown in Fig. 1, 
the integral breadth, /3F, due to the stacking 
faults only can be separated out by using the 
following formula [13] 

where /3 refers to the integral breadth values 
corrected for instrumental broadening and the 
subscript s refers to the integral breadth value of 
a standard profile, corresponding to the reflection 
(0006) in the present work. 

/3~ is related to the deformation fault pro- 
bability eD and growth fault probability 0~G by 
the following approximations [14] when both 
types of fault co-exist and the deformation is 
rather heavy. 

~D + o~G 6hLd 

]3F-- 4 -  3~D-  3~Gc 2cos0 '  
for H -  K = 3N ~+~ 1, L even 

3o:D + ~G 2ALd 

- -3 D - c 2 c o s  0' 
f o r H -  K=- 3 N •  

/ ~ F = 0 ,  f o r H - K =  3N, 

where A is the wavelength of X-radiation, 0 is 



L I N E  B R O A D E N I N G  S T U D I E S  O F  D E F O R M A T I O N  I N  M o T e z  

(a) 
lOT3 

- . , ~  2 0 
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43.86"I~ 
'1: 2 0  

Figure 1 X-ray diffraction profiles of (a) (1013), (b) (0006) and (c) (10i5) reflections. 

the Bragg angle, d is the interplanar spacing of 
HKiL  plane and c is the lattice parameter. 

I f  the growth faults are neglibly small, 0cG = 0, 
we can write, 

~D 6~tLD 

/ 3 r - 4  - 3~DC 2 c o s 0 '  

for H -  K = 3 N ~  1, 
L odd or even. 

The following equations have been used to 
calculate the domain size (D) and lattice strain 
(E) values. 
Wagner and Aqua [15]: 

Hall [16]: 

fl cos 0 1 4E sin 0 

= 7~ + - - - y -  ; 

Halder and Wagner [17]: 

fl cos 0 1 16E z sin 2; 0 

h -- D + flh cos 0 

The latter empirical formula is found to yield 
domain size and lattice strain values in close 
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agreement with those obtained by the Wagner- 
Aqua method and also with those obtained by 
Fourier analysis procedures. 

The dislocation density is related to the 
domain size by a formula pD = 3/I D p based on 
the Williamson and Smallman model [18]. 
pI~ is defined as the total length of the dis- 
location line per unit volume and is independent 
of the distribution of dislocations in the material. 

4. Results and discussion 
Domain size and lattice strain values were 
calculated from the three standard plots [15-17] 
and are shown in Fig. 2a, b and c. A common 
characteristic of all these plots is that the points 
corresponding to the reflections H - K = 3N lie 
on or cluster around a straight line fitted by the 
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least squares method, whereas the points with 
H - K r 3N are distinctively shifted from the 
line and this makes a basis for the calculation of 
the stacking fault probability. The domain size 
parameter has been also used to estimate the 
dislocation density in the material (Table I). 

In evaluating stacking fault probability, we 
consider only deformation faults arising out of a 
glide between two adjoining layers of non-metal 
atoms bound by the weak Van der Waal's forces. 
The probable occurrence of a glide between 
molybdenum and tellurium, or any other glide in 
which the covalent bonds are no longer con- 
served, is not considered. Such a glide, however, 
cannot be completely ruled out even though the 
rearrangement of the covalent network involves 
a high expense of energy. Although X-ray line 
broadening studies furnish no evidence as to the 
existence of low or high energy stacking faults, a 
high value of stacking fault probability ipso 
fac to  suggests the presence of low energy 
stacking faults. 

The resemblance of MoT% - a six layered 
hcp  (6H) structure - with that of a simple h cp  
(2//) structure may be considered as follows: the 
unit cell of this compound contains two 
molecular units of six atoms, two of molybdenum 
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Figure 2 Plots of (a) (~ cos O/)t) 2 versus (4 sin O/~)L (b) 
cos 0/~, versus 4 sin 0/~, (c) ~ cos O/?t versus 16 sin S 0 l 

(~ ;t cos 0). 
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TABLE I Results of X-ray line broadening in MoTe2 

Domain size and lattice strain Domain size Lattice strain Dislocation density, Deformation fault 
distribution D (A) e (10 -8) p9 (10 I: cm cm -~) probabilities, ~D 

Domain size - Cauchy 352.1 1.05 2.42 
Lattice strain - Cauchy 

(Hall) 

Domain size - Gaussian 
Lattice strain - Gaussian 

(Wagner-Aqua) 

Domain size - Cauchy 
Lattice strain - Gaussian 

(Halder-Wagner) 

333.3 2.50 2.70 

322.6 1.73 2.88 

c~D (10 i 3) 0.160 
~D (10i5) 0.128 

Average values 336~ 24 1.76~ 0 . 1 3  2.66~0.38 0.144~ 0.010 

and  four of tellurium. The compound  has weak 
Van der Waal ' s  b ind ing  between the two 
adjoining T e - - T e  layers whereas M o - - T e  are 
held strongly by the covalent bonds.  Therefore, 
it may be argued that  the Te/Te glide is the most  
probable,  the deforming force being relieved by 
a relative shift between the two identical 
molecular  blocks T e - - M o - - T e / T e - - M o - - T e .  
It  is not,  therefore, unreasonable  to visualize a 
molecular  block as the rigid uni t  equivalent  to 
one complete layer and  the blocks being 
arranged in an h c p  (2H) stacking. On the basis 
of this block-shift scheme, h c p (2H) theories 
would be the closest applicable to these com- 
pounds,  as discussed by the author  [19]. 

Fur thermore ,  Verble and Wiet ing [20] carried 
out an  experimental  investigation of long 
wavelength optical phonons  in the hexagonal 
layer structure MoS2 - a compound  isomorphic  
with M o T %  - and observed the degeneracy of 
mutual ly  exclusive infra-red and  R a m a n  active 
modes. They concluded that  a Van der Waal ' s  
type of interact ion existed between the adjoin- 
ing S - -S  layers and  used a single layer approxi- 
mat ion  for the analysis of their results, i.e. a 
molecular  block (unit) in which a mo lybdenum 
sheet is sandwiched between the two sulphur 
sheets. For  2 H  polytypic behaviour  of these 
structures, the repeat distance includes two 
such layers. They also suggest similar con- 
siderations apply to all the layered structures 
with more than  one such layer in the uni t  cell. 
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